CS224C: NLP for CSS

Computational Basics

Diyi Yang

Stanford CS

Regression

Regression

A mapping from input data x (drawn from instance space X) to a point y in R
R : the set of real numbers
$x=$ the empire state building
$y=17444.5625^{\prime \prime}$

Slide content credit to David Bamman

Linear Regression

Suppose we have n data points. For each data point i, we observe
$\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right), \ldots,\left(x_{n}, y_{n}\right)$
Linear regression states that $\hat{y}_{i}=\sum_{i=1}^{F} x_{i} \beta_{i}$

Regression for Social Sciences

Polynomial Regression

Nonlinear Regression

Support vector machines (regression)
Neural Networks

Number of Parameters

$$
\begin{aligned}
& \%=\text { Éve } \\
& \text { - }
\end{aligned}
$$

Overfitting

Memorizing the nuances (and noise) of the training data that prevents generalizing to unseen data

Sources of Error

Bias: Error due to mis-specifying the relationship between input and output Too few parameters, or the wrong kinds

Variance: Error due to sensitivity to random fluctuations in the training data. If you train on different data, do you get radically different predictions?

Too many parameters

Slide content credit to David Bamman

Regression for Social Sciences

Regression analysis is a very useful tool for social sciences

- Understand the relationship between variables, adjusting for other potential confounders
- Predict the value of one variable based on others

In Other Terminology

How good is the Fit?

Mean squared error (MSE) $\frac{1}{N} \sum_{i=1}^{N}\left(\hat{y}_{i}-y_{i}\right)^{2}$
Mean absolute error (MAE) $\frac{1}{N} \sum_{i=1}^{N}\left|\hat{y}_{i}-y_{i}\right|$

How good is the "fit"?

Sum of the squares total (SST): total variability about the mean
$\sum(Y-\bar{Y})^{2}$

Sum of the squared error (SSE): variability about the regression line

$$
\sum(Y-\hat{Y})^{2}
$$

Sum of the squares due to regression (SSR): total variability that is explained by the model
$\sum(\hat{Y}-\bar{Y})^{2}$

Coefficient of Determination r^{2}

The proportion of the variability explained by regression model

$$
\frac{\mathrm{SSR}}{\mathrm{SST}}
$$

Recommendations for Building Regression Models

A high r^{2} is desired with a reasonable set of variables When more variables get added to the model, r^{2} usually increases.
Thus, adjusted r^{2} is often used to account for the number of variables

Independent variables might contain duplicated information
Colinear if two variables are correlated
Multicolinearity if more than two variables are correlated - this will make the interpretation of regression coefficient problematic

Let's predict tie strength on Facebook

1. Why is this a regression task?
2. What is tie strength?
3. How can we get the ground truth?
4. How to get data?
5. How can we evaluate it?
6. Does the system really work?

[^0]
Let's predict tie strength on Facebook

Mark Granovetter introduced the concept of tie strength in 1973

"The Strength of Weak Ties"

The strength of a tie is a (probably linear) combination of the amount of time, the emotional intensity, the intimacy (mutual confiding), and the reciprocal services which characterize the tie

Let's predict tie strength on Facebook

How strong is your relationship with this person?
barely know them \qquad we are very close

How would you feel asking this friend to loan you \$100 or more?
would never ask
very comtortable
How helpful would this person be if you were looking for a job?
no help at all very helpful
How upset would you be if this person unfriended you? not upset at all

very upset
If you left Facebook for another social site, how important would it be to bring this friend along?
would not matter \qquad must bring them

Let's predict tie strength on Facebook

What features we could use to predict self-reported tie strength?

Predictive Intensity Variables	Distribution Max	
Wall words exchanged	L.	
Participant-initiated wall posts	L	
Friend-initiated wall posts	,	
Inbox messages exchanged	\square	
Inbox thread depth	\|n_-_- 3	
Participant's status updates		
Friend's status updates	I	
Friend's photo comments	L_-_-_-1352	
Intimacy Variables		
Participant's number of friends	N\|l	lad... . 729
Friend's number of friends	-m---3-3 2050	
Days since last communication	\|exa-------- 11	
Wall intimacy words	L___-... 148	
Inbox intimacy words	L_-.. - ${ }^{137}$	
Appearances together in photo	L...... . . . 73	
Participant's appearances in photo		
Distance between hometowns (mi)	- ل. ${ }^{\text {d }} 8182$	
Friend's relationship status	6% engaged $\quad 32 \%$ married 30% single $\quad 30 \%$ in relationship	

Days since first communication	Wllatrecem- ${ }^{1328}$
Reciprocal Services Variables	
Links exchanged by wall post	1.
Applications in common	[\|n-_-_-_ 18
Structural Variables	
Number of mutual friends	- 206
Groups in common	\|n__-_- 12
Norm. TF-IDF of interests and about	W14.L--------73
Emotional Support Variables	
Wall \& inbox positive emotion words	L_-_- - 19
Wall \& inbox negative emotion words	L._-........ ${ }^{51}$
Social Distance Variables	
Age difference (days)	lı_-_---- 5995
Number of occupations difference	\square
Educational difference (degrees)	
Overlapping words in religion	2
Political difference (scale)	-■-4

Let's predict tie strength on Facebook

 0.54

The model's Adjusted R2 values for all five dependent variables, broken down by the model's three main terms.

Modeling interactions between tie strength dimensions results in a substantial performance boost.

The model performs best on Loan $\$ 100$? and How strong?, the most general question

Let's predict tie strength on Facebook

Top 15 Predictive Variables	$\boldsymbol{\beta}$	F	p-value
Days since last communication	-0.76	453	<0.001
Days since first communication	0.755	7.55	<0.001
Intimacy \times Structural	0.4	12.37	<0.001
Wall words exchanged	0.299	11.51	<0.001
Mean strength of mutual friends	0.257	188.2	<0.001
Educational difference	-0.22	29.72	<0.001
Structural \times Structural	0.195	12.41	<0.001
Reciprocal Serv. \times Reciprocal Serv.	-0.19	14.4	<0.001
Participant-initiated wall posts	0.146	119.7	<0.001
Inbox thread depth	-0.14	1.09	0.29
Participant's number of friends	-0.14	30.34	<0.001
Inbox positive emotion words	0.135	3.64	0.05
Social Distance \times Structural	0.13	34	<0.001
Participant's number of apps	-0.12	2.32	0.12
Wall intimacy words	0.111	18.15	<0.001

> The fifteen predictive variables with highest standardized beta coefficients.
> The two Days since variables have large coefficients because of the difference between never communicating and communicating once.
> The utility distribution of the predictive variables forms a power-law distribution: with only these fifteen variables, the model has over half of the information it needs to predict tie strength.

Let's predict tie strength on Facebook

Don't forget error analysis

rating: $\mathbf{0}$; prediction: $\mathbf{0 . 4 4}$

[^1]
rating: 0.96; prediction: 0.47

This friend is very special. He and I attended the same high school, we interacted a lot over 3 years and we are very very close. We trust each other. My friend are I are still interacting in ways other than Facebook such as IM, emails, phones. Unfortunately, that friend and I rarely interact through Facebook so I guess your predictor doesn't have enough information to be accurate.

rating: 0.6; prediction: 0.11

Ah yes. This friend is an old ex. We haven't really spoken to each other in about 6 years, but we ended up friending each other on Facebook when I first joined. But he's still important to me. We were best friends for seven years before we dated. So I rated it where I did (I was actually even thinking of rating it higher) because I am optimistically hoping we'll recover some of our "best friend"-ness after a while. Hasn't happened yet, though.

Clustering

Clustering

Group a set of data points into a number of clusters, so that

- Data points in the same cluster are similar to each other
- Data points in different clusters are dissimilar

https://graphalchemist.github.io/Alchemy/images/features/cluster_team.png

Clustering

Finding structures in data, using just X

https://graphalchemist.github.io/Alchemy/images/features/cluster_team.png

What are Structures?

Partitioning a group of data point into K disjoint sets (K-means clustering)

Assigning X to hierarchical structures (Hierarchical clustering)

Assigning X to partial membership in K different sets (Graphic models, GMM)

Learning a representation of x that puts similar data points closer to each other (Deep learning)

Why and when do I need clustering?

Discovering interesting or unexpected structures can be useful for hypothesis generation

Unsupervised learning generates alternative representation as features for some subsequent supervised models

The structure of the White Helmets discourse has two clear clusters of accounts-a pro-White Helmets cluster that supports the organization and an anti-White Helmets cluster that criticizes them, using Twitter conversations.

Key Design Choices for Clustering

How to represent each data point?
How to calculate the similarity between data points?
What is the number of clusters to use?
How can we evaluate the resulting clusters?

Representation

Unigrams, bigrams
Word embeddings, metadata ...

This is a huge decision that impacts what you can learn

FEATURES

Similarity

Cosine similarity for vectors $\frac{\sum x_{i} y_{i}}{\sqrt{\sum x_{i}^{2}} \sqrt{\sum y_{i}^{2}}}$
Jaccard similarity for sets $\frac{|X \cap Y|}{|X \cup Y|}$
Euclidean distance for points $\sqrt{\sum\left|x_{i}-y_{i}\right|^{2}}$

Number of Clusters

When our desired number of clusters is obtained
Assume we know the best number of clusters

Or when stopping criterion is met
E.g., stop if similarity exceeds threshold

Evaluation

More complex than supervised learning since there's often no notion of "truth"

Internal criteria

Elements within clusters should be more similar to each other
Elements in different clusters should be less similar to each other

External criteria

How closely does your clustering reproduce gold standard clustering?

Some highlight: Hierarchical Clustering

Hierarchical order
among the elements
being clustered

Slide content credit to David Bamman
Louail, Thomas, Maxime Lenormand, Miguel Picornell, Oliva Garcia Cantu, Ricardo Herranz, Enrique Frias-Martinez, José J. Ramasco,
and Marc Barthelemy. "Uncovering the spatial structure of mobility networks." Nature communications 6, no. 1 (2015): 1-

Some highlight: K-means Clustering

Some highlight: K-means Clustering

Given a set of data points $\left\{x_{1}, x_{2}, x 3, \ldots x_{m}\right\}$

First initialize cluster centroid $\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{k}\right\}$ randomly

Repeat until convergence:
Assign labels $c_{i}:=\arg \min \left\|x_{i}-\mu_{j}\right\|^{2}$
Update centroids $\mu_{j}:=\frac{\sum_{i=1}^{m} \mathbf{1}\left\{c_{i}=j\right\} x_{i}}{\sum_{i=1}^{m} 1\left\{c_{i}=j\right\}}$

Some highlight: K-means Clustering

K-means algorithm. Training examples

(b)

(e)

(a)

(d)

(c)

(f)
are shown as dots, and cluster centroids are shown as crosses.
(a) Original dataset.
(b) Random initial cluster centroids.
(c-f) Illustration of running two iterations of k-means. In each iteration, we assign each training example to the closest cluster centroid (shown by "painting" the training examples the same color as the cluster centroid to which is assigned); then we move each cluster centroid to the mean of the points assigned to it.

Let's find different groups of people in support groups

Imagine this is on an online social support community ...

1. Why is this a clustering task?
2. What is "group" of people?
3. How can we get the ground truth?
4. How many groups?
5. What features should we use?
6. How can we evaluate it?

Let's find different groups of people in support groups

Imagine this is on an online social support community ...

We need to come up with a lot of features

```
Agent: members on CSN
Interaction: medical/treatment topics, emotions
Expectation: report to moderators ...
Context: private vs. public discussion ...
Goal: social support ...
Goal: social support ...
```

Seekers, Providers, Welcomers, and Storytellers: Modeling Social Roles in Online Health Communities American Cancer Society
tenbroeck Elijah Mayfield
Language Technologies Institute $\quad \begin{gathered}\text { Dan Jurafsky } \\ \text { Department of Linguistic }\end{gathered}$
Carnegie Mellon University
elijhecmu \quad Stanford University
elijah@cmu.edu

Let's find different groups of people in support groups

Let's find different groups of people in support groups

Intuition: a user is a mixture of different social roles

Let's find different groups of people in support groups

Emotional Support Provider Private Support Provider Newcomer Welcomar All_maind Cvonart			
Informational Support Story Sharer Informational Support Private Communic	Role Name	Prevalence (\%)	Typical Behaviors Listed in Importance
	Emotional Support Provider	33.3	Provide emotional support Provide empathy Participate in a large number of cancer-specific forums
	Welcomer	15.9	Frequently talking to newcomers Provide encouragement Higher number of replies
	Informational Support Provider	13.3	Provide informational support Higher usage of words related to symptoms and treatment
	Story Sharer	10.2	Higher level of self-disclose Seek emotional support Initialize higher number of threads

Let's find different groups of people in support groups

Work with 6 moderators on CSN to assess the derived roles
" It seems very comprehensive and there are so many different examples, so I feel like it is covered very well with your different roles and labels."

The identified roles were comprehensive

Is it a classification/regression/clustering problem?

I want to predict a star value $\{1,2,3,4,5\}$ for a product review
I want to find all of the texts that have allusions to Paradise Lost

I want to predict the stock price
I want to tell which team will win

I want to associate photographs of cats with animals in a taxonomic hierarchy
I want to reconstruct an evolutionary tree for languages

Computational Social Science in the Age of Big Data

danah boyd and Kate Crawford (2012), "Critical Questions for Big Data," Information, Communication and Society

1 "Big data" changes the definition of knowledge

How do computational methods/quantitative analysis pragmatically affect epistemology?

Restricted to what data is available (twitter, data that's digitized, google books, etc.). How do we counter this in experimental designs?

Establishes alternative norms for what "research" looks like

2 Claims to objectivity and accuracy are misleading

Data collection, selection process is subjective, reflecting belief in what matters.

Model design is likewise subjective model choice (classification vs. clustering etc.) representation of data feature selection

Claims need to match the sampling bias of the data

3 Bigger data is not always better data

Uncertainty about its source or selection mechanism [Twitter, Google books]
Appropriateness for question under examination
How did the data you have get there?
Are there other ways to solicit the data you need?
Remember the value of small data: individual examples and case studies

4 Taken out of context, big data loses its meaning

A representation (through features) is a necessary approximation; what are the consequences of that approximation?

Example: quantitative measures of "tie strength" and its interpretation

5 Just because it is accessible does not make it ethical

Anonymization practices for sensitive data (even if born public)

Accountability both to research practice and to subjects of analysis

6 Limited access to big data creates new digital divides

Inequalities in access to data and the production of knowledge

Privileging of skills required to produce knowledge

[^0]: https://murraydare.co.uk/marketing-theory/strong-weak-ties

[^1]: I don't know why he friended me. But I'm easy on Facebook, because I feel like I'm somehow building (at least a miniscule amount of) social capital, even when I don't know the person. We went to the same high school and have a few dozen common friends. We've never interacted with each other on
 Facebook aside from the friending

