CS224C: NLP for CSS

Computational Basics

Diyi Yang

Stanford CS

Announcements

Please sign up for Presentation by this coming Tuesday (Apr 9th)

Data Access

Without access to social media platform data, we risk being left in the dark

Significance:

Social media data are essential for studying human behaviour and understanding potential systemic risks. Social media platforms have, however, begun to remove access to these data. In response, other countries and regions have implemented legislation that compels platforms to provide researchers with data access. In South Africa, we have lagged behind the Global North when it comes to using platform data in our research and, given the recent access restrictions, we risk being left behind. In this Commentary, I call attention to this

der to researchers to

Challenge Summary

1. The complexity of the theoretical issues confronting social science
2. The difficulty in obtaining the relevant observational data
3. The difficulty of manipulating large scale social organizationals experimentally
4. The complexity and difficulty in computationally, scientifically and rigorously modeling such problems and data

Computational Social Science in a nutshell

Data

Algorithm

Problem

Theory

Knowledge Impact

Lecture Overview

- Classification
- Regression
- Clustering
- Big Data + CSS

Use of Classification or Regression

Two major uses of supervised classification/regression

Prediction:

Train a model on a sample of data (x, y) to predict for some new data x^{\prime} In zero-shot or few-shot prompting, no training is needed!

Interpretation or Explanation:

Train a model on a sample of data (x, y) to understand the relationship between x and y

Common Methods

Clustering

Regression

Classification

A mapping h from input data x (drawn from instance space X) to a label y from some enumerable output space Y
$X=$ set of all documents
$Y=\{$ English, Mandarin, Greek, ...\}
$x=$ a single document
$y=$ ancient Greek

Reviews and Ratings

Reviewed: October 24, 2022
Lovely little spot to spend some time. Very grateful for the clean, stylish room after travelling.
;) - Beautiful, spacious room - after 22 hours of travel and a botched flight, I cried with happiness when I arrive.
Large, comfy bed - I didn't want to get out
Friendly, helpful staff - especially the bar staff
Accessible, enjoyable bar - open to late with a large selection of drinks
Lots of room to sit by the pool. With a spa too. As well as on the foreshore in hammocks. Very laidback, enjoyable environment. I happily spent the day here, relaxing before a friends wedding I loved walking along the foreshore footpath, following the shoreline and walking past the other hotels.
:) - The beach wasn't an inviting swim, though a beautiful backdrop - which is not a fault of the hotel's. But flagging in case you're romanticising a beach swim; the hotel pool is better Watch: hidden costs. This might be normal/acceptable in non-Australian countries but I was caught off guard. There's the room cost, then there's the taxes (which booking.com tends to include in their final price), and THEN the hotel has a 'resort fee'. Which allows for 'amenities' access - which I find a bit "on the nose", the 'amenities' is what you automatically have access to when you book a room... but i guess some countres/states prefer a staggered bill...

IMDb Charts

IMDb Top 250 Movies

IMDb Top 250 as rated by regular IMDb voters.

Showing 250 Titles

Rank \& Title

Your Rating Rating
9.2

5. 12 Angry Men (1957)

6. Schindler's List (1993)

Some Text Classification Applications

Task	\mathbf{x}	\mathbf{y}
Language identification	text	\{English, Mandarin, Greek, ...\}
Spam classification	email	$\{$ spam, not spam\}
Authorship attribution	text	$\{j k$ rowling, james joyce, $\ldots\}$
Genre classification	novel	\{detective, romance, gothic,..$\}$
Sentiment classification	text	\{positive, negative, neutral, mixed $\}$

Lots of Model Choices

Model Differences

Binary Classification
One out of 2 labels applied to a given x

Multiclass Classification
One out of N labels applied to a given x

Multilabel Classification
Multiple labels apply to a given x

Bag of Words

I love this movie! It's sweet, but with satirical humor. The dialogue is great and the adventure scenes are fun... It manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet!

Beyond the Bag of Words

Some linguistic phenomena require going beyond the bag-of-words:

- That's not bad for the first day
- This is not the worst thing that can happen
- It would be nice if you acted like you understood
- This film should be brilliant. The actors are first grade. Stallone plays a happy, wonderful man. His sweet wife is beautiful and adores him. He has a fascinating gift for living life fully. It sounds like a great plot, however, the film is a failure.

Signals in Text Beyond Words

Emojis: dis准
Special characters: ' \}\{[] \# @ ! * < > ~
Out of vocabulary words: icebucketchallenge, wowwwww
URLs: https://www.nytimes.com/
Typos or spelling errors: typs, tpos, ...
Social media features: @user, RT, \#hashtags
Slang words: chill, slay, sick ...

Signals in Text Beyond English

Language identification has very high accuracy for long texts, but struggles with social media (short informal) text

Code switching: I have 2 friends due estudiaron la contabilidad

Applying Text Classification

We do
The "raw" form of text is usually a sequence of characters
not cover this in class. Check out this after class if needed

Converting this into a meaningful feature vector x requires a series of design decisions, such as tokenization, normalization, and filtering

Vocabulary Size Filtering

A small number of word types accounts for the majority of word tokens.

The number of parameters in a classifier usually grows linearly with the size of the vocabulary. It can be useful to limit the vocabulary, e.g., to word types appearing at least x times, or in at least y\% of documents.

Experiment Setup (Train/Test Split)

| Training |
| :---: | | Development |
| :---: |
| Or Validation |

Testing

Size	80%	10%	10%
Purpose	Training Models	Model Selection (e.g., parameters)	Evaluation (You should never look at it until the very end)

Evaluating Your Classifier

Goal is to predict future performance, on unseen data.

It is hard to predict the future.

Do not evaluate on data that was already used ...
For training
For hyperparameter selection
For selecting the classification model or model structure
For making preprocessing decisions, such as vocabulary selection.

Beyond Right and Wrong

For any label, there are two ways to be wrong:
False positive: the system incorrectly predicts the label False negative: the system incorrectly fails to predict the label.

Similarly, there are two ways to be right:
True positive: the system correctly predicts the label
True negative: the system correctly predicts that the label does not apply to it.

Accuracy

$$
\text { accuracy }=\frac{T P+T N}{T P+F P+F N+T N}
$$

The problem with accuracy is rare labels.
Consider a system for detecting tweets written in Telugu.
0.3% of Tweets are written in Telugu.
A system that always says "Not Telugu" is 99.7% accurate.

Recall

Recall $=\frac{T P}{T P+F N}$

Recall is the fraction of positive instances which were correctly classified. The "never Telugu" classifier has zero recall.
An "always Telugu" classifier would have perfect recall.

Precision

Precision $=\frac{T P}{T P+F P}$
Precision is the fraction of positive predictions that were correct.
The "never Telugu" classifier has precision 0/0.
An "always Telugu" classifier would have precision $p=0.003$, which is the rate of Telugu tweets in the dataset.

Combining Recall and Precision

In binary classification, there is an inherent tradeoff btw recall and precision.

The correct navigation of this tradeoff is problem-specific! For a preliminary medical diagnosis, we might prefer high recall. False positives can be screened out later.

The "beyond a reasonable doubt" standard of U.S. criminal law implies a preference for high precision.

Combining Recall and Precision

In binary classification, there is an inherent tradeoff btw recall and precision.

The correct navigation of this tradeoff is problem-specific!

If recall and precision are weighted equally, they can be combined into a single number called F-measure

$$
F=\frac{2 \times \text { Recall } \times \text { Precision }}{\text { Recall }+ \text { Precision }}
$$

Evaluating Multi-Class Classification

Recall and precision imply binary classification: each instance is either positive or negative.

In multi-class classification, each instance is positive for one class, and negative for all other classes.

Evaluating Multi-Class Classification

Two ways to combine performance across classes:

Macro F-measure: compute the F-measure per class, and average across all classes. This treats all classes equally, regardless of their frequency.

Micro F-measure: compute the total number of true positives, false positives, and false negatives across all classes, and compute a single F-measure. This emphasizes performance on high-frequency classes.

Comparing Classifiers

Suppose you and your friend build classifiers to solve a problem:
You classifier C_{1} get 82\% accuracy
You friend's classifier C_{2} get 73% accuracy

Will C_{1} be more accurate in the future?
What is the test set had 10000 examples?
What is the test set had 11 examples?

Getting Labels

Text classification relies on large datasets of labeled examples. There are two main ways to get labels:

Metadata sometimes tell us exactly what we want to know: Did the Senator vote for a bill? How many stars did the reviewer give? Was the request for free pizza accepted?

Other times, the labels must be annotated, by experts or by "crow-workers"

Let's build a hate speech classifier for X

What do we need?

1. Why do we need to set it up as a classification task?
2. What counts as a hate speech?
3. How can we get the ground truth for a tweet?
4. How many data points do we need?
5. How can we evaluate this system?
6. Does the system really work?

Let's build a hate speech classifier for X

A tweet is offensive if it

1. uses a sexist or racial slur.
2. attacks a minority.
3. seeks to silence a minority.
4. criticizes a minority (without a well founded argument).
5. promotes, but does not directly use, hate speech or violent crime.
6. criticizes a minority and uses a straw man argument.
7. blatantly misrepresents truth or seeks to distort views on a minority with unfounded claims.
8. shows support of problematic hash tags. E.g. "\#BanIslam", "\#whoriental", "\#whitegenocide"
9. negatively stereotypes a minority.
10. defends xenophobia or sexism.
11. contains a screen name that is offensive, as per the previous criteria, the tweet is ambiguous (at best), and the tweet is on a topic that satisfies any of the above criteria.

Hateful Symbols or Hateful People? Predictive Features for Hate Speech Detection on Twitter

Zeerak Waseem
University of Copenhagen
Copenhagen, Denmark
csp265@alumni.ku.dk

Dirk Hovy

University of Copenhagen Copenhagen, Denmark dirk.hovy@hum.ku.dk
"Annotated 16,914 tweets,
3,383 of that for sexist content sent by 613 users,
1,972 for racist content sent by 9 users
11,559 for neither sexist or racist, sent by 614 users"

	char n-grams	+gender	+gender +loc	word n-grams
F1	73.89	73.93	73.62^{*}	64.58
Precision	72.87%	72.93%	72.58%	64.39%
Recall	77.75%	77.74%	77.43%	71.93%

Let's build a hate speech classifier for X

Is this classifier good?

Figure 1: Phrases in African American English (AAE), their non-AAE equivalents (from Spears, 1998), and toxicity scores from PerspectiveAPI.com. Perspective is a tool from Jigsaw/Alphabet that uses a convolutional neural network to detect toxic language, trained on crowdsourced data where annotators were asked to label the toxicity of text without metadata.

Racial Bias in Hate Speech and Abusive Language Detection Datasets

Thomas Davidson
Department of Sociology
Cornell University
trd54@cornell.edu

Debasmita Bhattacharya
Department of
Computer Science
Cornell University db758@cornell.edu

Ingmar Weber
Qatar Computer
Research Institute
iweber@hbku.edu.qa

The Risk of Racial Bias in Hate Speech Detection

Maarten Sap ${ }^{\diamond} \quad$ Dallas Card ${ }^{\star} \quad$ Saadia Gabriel ${ }^{\diamond} \quad$ Yejin Choi ${ }^{\diamond \theta} \quad$ Noah A. Smith ${ }^{\diamond \diamond}$ \diamond Paul G. Allen School of Computer Science \& Engineering, University of Washington, Seattle, USA ${ }^{*}$ Machine Learning Department, Carnegie Mellon University, Pittsburgh, USA
${ }^{\circ}$ Allen Institute for Artificial Intelligence, Seattle, USA

Exploring the Role of Grammar and Word Choice in Bias Toward African American English (AAE) in Hate Speech Classification

Camille Harris	Matan Halevy	Ayanna Howard Georgia Institute of Technology Atlanta, GA, UAA charris320@gatech.edu
Georgia Institute of Technology		
Atlanta, GA, USA		
matan@gatech.edu		

Let's build a hate speech classifier for X

Hate speech goes beyond explicit usage of keywords

```
    Hate Speech
```

Explicit Hate Speech
(intentional)
stereotyping,
racism, sexism,
targeted threats
" [IDENTITY]
destroy everything
they touch"
Explicit Hate Speech Example

Implicit Hate Speech

```
"White revolution
    is the only
        solution."
```

Implicit Hate Speech Example

Let's build a hate speech classifier for X

Hate speech goes beyond explicit usage of keywords

Hate Speech

Explicit Hate Speech
(intentional) stereotyping, racism, sexism, targeted threats

Implicit Hate Speech
(intentional)
coded language, colloquialisms, connotations, dog whistles, entity framing, hidden threats, idioms, inferiority assumptions, irony, metaphors, presuppositions, symbolic language, ...

Let's build an implicit hate speech classifier for X

Incitement of Violence ${ }_{\text {(somenilie, 2011; Assembl, 1966) }}$
Inferiority Language ${ }_{\text {(Niesesen, 2002; }}$, emenedy etal, 2018
Irony (Wsseem and Hovr, 2016; Justo etal, 2014)
Stereotypes (Wanere and discschberg 2012)
Threats and Intimidation ${ }_{\text {(sangurinettie et., 2018) }}$
White Grievance (Berbier, 2000; Bloche etal. 2020; Miler-Disis, 2020)

Let's build an implicit hate speech classifier for X

5M tweets from prominent hate groups

Filter out tweets with
explicit hate

Annotation with good agreement Fleiss' $\kappa=0.6$

Let's build an implicit hate speech classifier for X

BERT base
(Devlin et al., 2018)

$1^{\text {st }}$ stage fine-tune on existing hate speech datasets via multi-task learning

$2^{\text {nd }}$ stage fine-tune on Implicit Hate, with auto-augmentation

Let's build an implicit hate speech classifier for X

Recognizing A Classification Problem and Its Complexities

Can you formulate your question as a choice among some possible classes?
Can you create (or find) labeled data that marks that choice for a bunch of examples? Can you make that choice?

Can you create features that might help in distinguishing those classes?
Is the classification enough to capture the nuances?

Regression

Regression

A mapping from input data x (drawn from instance space X) to a point y in R
R : the set of real numbers
$x=$ the empire state building
$y=17444.5625^{\prime \prime}$

Slide content credit to David Bamman

Linear Regression

Suppose we have n data points. For each data point i, we observe
$\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right), \ldots,\left(x_{n}, y_{n}\right)$
Linear regression states that $\hat{y}_{i}=\sum_{i=1}^{F} x_{i} \beta_{i}$

Regression for Social Sciences

Polynomial Regression

Nonlinear Regression

Support vector machines (regression)
Neural Networks

Number of Parameters

$$
\begin{aligned}
& \%=\text { Éve } \\
& \text { - }
\end{aligned}
$$

Overfitting

Memorizing the nuances (and noise) of the training data that prevents generalizing to unseen data

Sources of Error

Bias: Error due to mis-specifying the relationship between input and output Too few parameters, or the wrong kinds

Variance: Error due to sensitivity to random fluctuations in the training data. If you train on different data, do you get radically different predictions?

Too many parameters

Slide content credit to David Bamman

Regression for Social Sciences

Regression analysis is a very useful tool for social sciences

- Understand the relationship between variables, adjusting for other potential confounders
- Predict the value of one variable based on others

In Other Terminology

How good is the Fit?

Mean squared error (MSE) $\frac{1}{N} \sum_{i=1}^{N}\left(\hat{y}_{i}-y_{i}\right)^{2}$
Mean absolute error (MAE) $\frac{1}{N} \sum_{i=1}^{N}\left|\hat{y}_{i}-y_{i}\right|$

How good is the "fit"?

Sum of the squares total (SST): total variability about the mean
$\sum(Y-\bar{Y})^{2}$

Sum of the squared error (SSE): variability about the regression line

$$
\sum(Y-\hat{Y})^{2}
$$

Sum of the squares due to regression (SSR): total variability that is explained by the model
$\sum(\hat{Y}-\bar{Y})^{2}$

Coefficient of Determination r^{2}

The proportion of the variability explained by regression model

$$
\frac{\mathrm{SSR}}{\mathrm{SST}}
$$

Recommendations for Building Regression Models

A high r^{2} is desired with a reasonable set of variables When more variables get added to the model, r^{2} usually increases.
Thus, adjusted r^{2} is often used to account for the number of variables

Independent variables might contain duplicated information
Colinear if two variables are correlated
Multicolinearity if more than two variables are correlated - this will make the interpretation of regression coefficient problematic

Let's predict tie strength on Facebook

1. Why is this a regression task?
2. What is tie strength?
3. How can we get the ground truth?
4. How to get data?
5. How can we evaluate it?
6. Does the system really work?

[^0]
Let's predict tie strength on Facebook

Mark Granovetter introduced the concept of tie strength in1973

"The Strength of Weak Ties"

The strength of a tie is a (probably linear) combination of the amount of time, the emotional intensity, the intimacy (mutual confiding), and the reciprocal services which characterize the tie

Let's predict tie strength on Facebook

How strong is your relationship with this person?
barely know them \qquad we are very close

How would you feel asking this friend to loan you \$100 or more?
would never ask
very comtortable
How helpful would this person be if you were looking for a job?
no help at all very helpful
How upset would you be if this person unfriended you? not upset at all

very upset
If you left Facebook for another social site, how important would it be to bring this friend along?
would not matter \qquad must bring them

Let's predict tie strength on Facebook

What features we could use to predict self-reported tie strength?

Predictive Intensity Variables	Distribution Max	
Wall words exchanged	L.	
Participant-initiated wall posts	L	
Friend-initiated wall posts	,	
Inbox messages exchanged	\square	
Inbox thread depth	\|n_-_- 3	
Participant's status updates		
Friend's status updates	I	
Friend's photo comments	L_-_-_-1352	
Intimacy Variables		
Participant's number of friends	N\|l	lad... . 729
Friend's number of friends	-m---3-3 2050	
Days since last communication	\|exa-------- 11	
Wall intimacy words	L___-... 148	
Inbox intimacy words	L_-.. - ${ }^{137}$	
Appearances together in photo	L...... . . . 73	
Participant's appearances in photo		
Distance between hometowns (mi)	- ل. ${ }^{\text {d }} 8182$	
Friend's relationship status	6% engaged $\quad 32 \%$ married 30% single $\quad 30 \%$ in relationship	

Days since first communication	Wllatrecem- ${ }^{1328}$
Reciprocal Services Variables	
Links exchanged by wall post	1.
Applications in common	[\|n-_-_-_ 18
Structural Variables	
Number of mutual friends	- 206
Groups in common	\|n__-_- 12
Norm. TF-IDF of interests and about	W14.L--------73
Emotional Support Variables	
Wall \& inbox positive emotion words	L_-_- - 19
Wall \& inbox negative emotion words	L._-........ ${ }^{51}$
Social Distance Variables	
Age difference (days)	lı_-_---- 5995
Number of occupations difference	\square
Educational difference (degrees)	
Overlapping words in religion	2
Political difference (scale)	-■-4

Let's predict tie strength on Facebook

 0.54

The model's Adjusted R2 values for all five dependent variables, broken down by the model's three main terms.

Modeling interactions between tie strength dimensions results in a substantial performance boost.

The model performs best on Loan $\$ 100$? and How strong?, the most general question

Let's predict tie strength on Facebook

Top 15 Predictive Variables	$\boldsymbol{\beta}$	F	p-value
Days since last communication	-0.76	453	<0.001
Days since first communication	0.755	7.55	<0.001
Intimacy \times Structural	0.4	12.37	<0.001
Wall words exchanged	0.299	11.51	<0.001
Mean strength of mutual friends	0.257	188.2	<0.001
Educational difference	-0.22	29.72	<0.001
Structural \times Structural	0.195	12.41	<0.001
Reciprocal Serv. \times Reciprocal Serv.	-0.19	14.4	<0.001
Participant-initiated wall posts	0.146	119.7	<0.001
Inbox thread depth	-0.14	1.09	0.29
Participant's number of friends	-0.14	30.34	<0.001
Inbox positive emotion words	0.135	3.64	0.05
Social Distance \times Structural	0.13	34	<0.001
Participant's number of apps	-0.12	2.32	0.12
Wall intimacy words	0.111	18.15	<0.001

> The fifteen predictive variables with highest standardized beta coefficients.
> The two Days since variables have large coefficients because of the difference between never communicating and communicating once.
> The utility distribution of the predictive variables forms a power-law distribution: with only these fifteen variables, the model has over half of the information it needs to predict tie strength.

Let's predict tie strength on Facebook

Don't forget error analysis

rating: $\mathbf{0}$; prediction: $\mathbf{0 . 4 4}$

[^1]
rating: 0.96; prediction: 0.47

This friend is very special. He and I attended the same high school, we interacted a lot over 3 years and we are very very close. We trust each other. My friend are I are still interacting in ways other than Facebook such as IM, emails, phones. Unfortunately, that friend and I rarely interact through Facebook so I guess your predictor doesn't have enough information to be accurate.

rating: 0.6; prediction: 0.11

Ah yes. This friend is an old ex. We haven't really spoken to each other in about 6 years, but we ended up friending each other on Facebook when I first joined. But he's still important to me. We were best friends for seven years before we dated. So I rated it where I did (I was actually even thinking of rating it higher) because I am optimistically hoping we'll recover some of our "best friend"-ness after a while. Hasn't happened yet, though.

[^0]: https://murraydare.co.uk/marketing-theory/strong-weak-ties

[^1]: I don't know why he friended me. But I'm easy on Facebook, because I feel like I'm somehow building (at least a miniscule amount of) social capital, even when I don't know the person. We went to the same high school and have a few dozen common friends. We've never interacted with each other on
 Facebook aside from the friending

